Number 16 – September 19, 2011

Last Biweekly Issue

This is the next to the last issue of the Home, Yard, and Garden Pest Newsletter for 2011. It is also the last issue published every other week for the year. The last issue for 2011 will be published about one month from now in mid-October. It will contain the index of articles published through the year in the newsletter. (Phil Nixon)

Periodical Cicada Hatched

Inspection of damaged tree branches collected near Decatur, IL in Macon County on September 8, 2011 revealed empty egg cases of periodical cicada. The eggs were inserted by the females into tree twigs and branches in June. They hatch several weeks later in late August to early September. Upon hatching, the young nymphs free-fall to the ground, tunnel into the soil, and locate a root to feed upon. Those of this brood remain there for the next thirteen years, feeding on the sap of tree roots. Although they will occasionally burrow to feed on other roots, they stay below the soil surface. (Phil Nixon)

Leaf Galls on Pin Oak

Abnormal leaf growths show up at various times during the year on our landscape plants. Leaves get bumps, blisters, and other warty type growths varying in size from a pin head to marble sized. These are leaf galls and they are unattractive only because they are not normal. When found in high numbers they cause the owner much concern but really do very little harm to the plant. This fall we are seeing high number of leaf galls on pin oak in the Quad Cities area.

Galls develop when plant tissue has been irritated or stimulated by some type of pest. Aphids, midges, wasps, or mites cause the majority of known types of galls while bacteria, fungi, and viruses cause the rest. Galls are abnormal plant growth or swellings made up of plant tissue. They can be thought of as benign plant tumors. There are several different types of galls that infest oaks and not only on the leaves but also on the twigs and stems. Infestations vary from year to year and this year seems to be a good year for leaf galls. Often when a pest population reaches high numbers they crash and for the next few years you see fewer. But the numbers will build again to another bumper year.

Leaf galls often are found on green leaves that are still capable of photosynthesizing, producing food for the tree. You may see premature leaf drop but this late in the season the tree is starting to shut down normally and leaf drop is soon to occur regardless of leaf galls.
Once galls begin to develop it is impossible to stop or reverse development. This leaf gall is caused by a small wasp that attacks the leaves in the spring. As with most leaf galls chemical controls are not warranted since the damage is mainly aesthetic. Also, timing of application is difficult to achieve for effective control. Treatments must be correctly timed and thorough coverage is essential. Cultural controls such as raking and destroying fallen infested leaves reduces overwintering numbers.

Leaf galls are primarily a problem in the eyes of the tree owner. Some years there are higher numbers than others. We all get a few bumps and warts over the years and we manage to survive just fine. (Martha A. Smith, Horticulture Educator)

Emerald Ash Borer Recent Finds

Emerald ash borer (EAB) has been found recently in three Illinois counties that were not known to have the insect previously. They are Kankakee, Marion, and Effingham counties.

Kankakee county locations include Kankakee River State Park, Route 102 in Bourbonnais, and North Hobbie Avenue in Kankakee. All three finds were verified by USDA APHIS on July 19, 2011. Kankakee County is within the state quarantine established after EAB was found in Iroquois and Champaign counties last year. The beetle has also been found previously in Will County, so its occurrence in Kankakee County was expected.

The Marion County detection marks the first find of EAB in southern Illinois. It was discovered during the harvest of the purple sticky traps used in an EAB study by the U.S. and the Illinois Departments of Agriculture. The intensive 55-county study conducted by the federal and state departments of agriculture revealed EAB has taken up residence in ash trees just north of Salem, Illinois.

Illinois Department of Agriculture (IDA) staff collected several specimens from a single trap placed in a Marion County rural residential area situated about a mile east of I-57 and a mile north of US 50. USDA APHIS confirmed that it was EAB on August 25, 2011. Subsequent investigation of attacked trees in the area reveals that EAB has been at the Marion County location for an estimated five to seven years.

The Effingham County detection occurred when IDA officials were making a site visit to meet with Salem officials. IDA staff observed some unsightly ash trees at the Green Creek Rest Area on I-57, 4 miles north of Effingham in Effingham County en route and stopped to make an inspection where they found live larvae. USDA APHIS also confirmed this find as *Agrilus planipennis*, or EAB on September 13, 2011.

The Marion and Effingham County finds are outside of the current state quarantine for EAB. New quarantine boundary adjustments will not be made until all purple traps have been harvested and analyzed, but Marion and Effingham County residents are urged to heed all quarantine guidelines as if they were officially quarantined.

Homeowners and others interested in EAB Management are encouraged to attend an upcoming seminar being hosted in Effingham County on Nov. 1 at
the University of Illinois Extension office at 1209 Wentehe Drive in Effingham. The event will take place from 9am-2pm. To sign up for the seminar, contact the Extension office at 217-347-7773.

All of the finds of EAB in Illinois outside of the Chicago metropolitan area have been along or near interstates. IDA officials highly suspect that unwitting automobile, truck and train traffic may be culprits for the exacerbated transport of this pest. Less than 50 yards from the trap location near Salem in Marion County is a major freight rail line, a multiple rail line siding, and switching yard. Trains stop along there numerous times a day for up to an hour.

With these recent finds in southern Illinois, IDA officials strongly encourage a heightened awareness of stressed and weakened ash trees. Local and regional tree companies, villages, and cities should explore the Department of Agriculture’s compliance agreement program, and generally brush up on rules and regulations pertaining to the processing and transport of ash materials.

Kankakee, Marion, and Effingham counties bring the total number of Illinois counties with a confirmed EAB infestation to twenty. Previous detections were made in Boone, Bureau, Champaign, Cook, DeKalb, DuPage, Grundy, Iroquois, Kane, Kendall, Lake, LaSalle, McHenry, McLean, Ogle, Will and Winnebago counties.

The emerald ash borer is difficult to detect, especially in newly-infested trees. Watch for metallic-green beetles about half the diameter of a penny on or near ash trees that are showing signs of disease or stress. Other signs of infestation in ash trees include D-shaped holes in the bark of the trunk or branches and shoots growing from its base. Since the emerald ash borer was first confirmed in the Midwest in the summer of 2002, more than 25 million ash trees have been felled by the beetle.

Anyone who suspects a tree has been infested is urged to contact either their county Extension office or village forester. For more information, visit IDA’s website at www.IllinoisEAB.com or the EAB information on the University of Illinois IPM website at ipm.illinois.edu/. (Phil Nixon and IDA News Release)

The U of I Plant Clinic will be Moving Soon!

The U of I Plant Clinic has been located on 1401 St. Mary’s Road, in Urbana, (near the U of I South Farms), for approximately 35 years. We have begun the transition of relocating the U of I Plant Clinic to new labs at S-417 Turner Hall, which is located on the U of I campus. Additional information and map of Turner Hall can be found at the following link: http://www.fs.uiuc.edu/ada/0197.html

In the past, the U of I Plant Clinic has closed and, not accepted anymore samples, after September 15th. However, we are now going to accept plant samples year round. We will continue with regular business hours from May 1st –September 30th. If you need to submit a sample during October 1st-April 30th, please call ahead to ensure the availability of our diagnosticians or specialists. Parking will be available at
metered parking spaces at our new location for those who would like to deliver their plant sample in person.

The Plant Clinic’s new address after September 30th, 2011:
University of Illinois Plant Clinic
1102 S. Goodwin, S-417 Turner Hall
Urbana, IL 61801

Our phone number will remain the same: (217) 333-0519
For more information about the U of I Plant Clinic:

Contact: Stephanie Porter (satterle@illinois.edu) or Suzanne Bissonnette (sbissonn@illinois.edu)

University of Illinois Plant Clinic website: http://web.extension.illinois.edu/plantclinic/

University of Illinois Plant Clinic Podcasts: http://web.extension.illinois.edu/podcasts/plantarpest/
Stephanie Porter

Is Your Hosta Hosting Hostile Pathogens?

The hosta is a popular landscaping plant, loved for its beautiful variety of foliage, and ease of cultivation. Around this time, delicate purple or white flowers develop before frost. Below are some of the most prevalent pathogens on hosta in Illinois:

Foliar nematodes
Hosta can be susceptible to foliar nematodes (*Aphelenchoides* spp). These microscopic worms can infect the above-ground parts. They are able to swim through a film of water on the leaf surface of a hosta and then enter plant tissue via natural openings or wounds. Foliar nematodes that infect hosta is able to spread to plant tissue in drops of splashing water or by way of gardening tools. Symptoms of these foliar nematodes start out as water-soaked areas within parallel veins on leaves, but later these long areas can become necrotic, dark, and maybe even tattered in appearance. To control foliar nematodes remove infected leaves, reduce overhead irrigation, and sanitize garden tools.

Petiole Rot
Petiole rot on hosta is caused by the fungus *Sclerotium rolfsii*. This disease usually kills the plant quickly by rotting the base of the petioles. Fungal structures of Sclerotium rolfsii can be found on the soil surface or near the crown of the hosta. If a hosta becomes infected with petiole rot, leaves can turn yellow, collapse, and can easily be pulled from the ground. Often times, the base of the petiole is covered in white, thread-like mycelium and small, round, tan to brown structures may be visible. These structures are sclerotia, which are resting structures of this fungus, that can provide a way of overwintering. *Sclerotium rolfsii* can be spread to other plants when the sclerotia are moved from one area to another on shoes,
garden equipment, and plant material. Because the fungus can overwinter for years in the soil, it can be very difficult to control. Destroying infected plants, removing infested soil, and using preventative fungicides will offer some control of this disease.

Hosta Virus X
Hosta Virus X (also known as HVX) is a virus which causes mosaic, yellowing, and necrosis on the foliage of hosta plants. Once a hosta is infected, this virus can lurk within infected plant sap, and can easily be spread by hands and garden tools. HVX can also persist in plants for years before symptoms develop, and any plants propagated from an infected plant will also develop the disease. Buying plants from reputable sources, destroying symptomatic plants, and sanitizing equipment are the only means of control for the Host Virus X.

Leaf Spots
Leaf spots are common to hosta. While they make plants less attractive, they rarely are considered to be serious disease; although they can contribute to overall plant stress. There are many different fungi that cause foliar spots on hosta. Control methods for all of the hosta leaf spot diseases are similar, regardless of the fungal, causal pathogen and area as follows: overhead irrigation should be avoided, heavily infected leaves removed, and garden equipment sanitized. Protective fungicides can be applied before the disease infection takes place. These chemicals are especially useful for plants that were previously affected by fungal leaf spots in the past.

Abiotic Problems
Like all plants, hosta is susceptible to sunscald and drought stress. Slugs can also be a major pest of hosta. Hosta plants prefer moist, well-drained soils. Depending on the variety, they will do well in a range of full shade to full sun (though most favor partial shade). Stressed plants tend to develop diseases more frequently than unstressed ones, so reducing stress and increasing plant vitality can be a powerful tool to prevent disease development in your garden. *(Diane Plewa)*